cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
a)chứng minh tam giác ABD= tam giác ACE.
b) gọi BF, CM lần lượt là đường cao của tam giác ABD và tam giác ACE. chứng minh tam giác AFM cân
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và tia CB lấy theo thú tự điểm D và E sao cho BD=CE.
a, Chứng minh: tam giác ADE cân.
b, Gọi M là trung điểm BC. Chứng minh: AM là tia phân giác của góc DAE và AM vuông góc DE.
c,Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD,AE. Chứng minh:BH=CK.
d, Chứng minh:HK // BC.
Mọi ng giúp mình với.
Cho tam giác ABC cân tại A, trên tia đối của BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE.
A) Chứng minh tam giác ADE cân
B)Kẻ BH vuông góc với AD tại H, CK vuông góc cới AE tại K
Chứng minh tam giác AHK cân và HK//DE
C)Gọi M là giao điểm của CK và BH.Chứng minh tam giác MBC cân
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC và CB lần lượt lấy điểm D và E sao cho BD = CE
a) C/m tam giác ADE cân
b) Gọi M là trung điểm của BC. C/m AH là tia phân giác của góc DAE và AM vuông góc ĐỂ
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc AD, AE. C/m rằng BD=CK
d) C/m HK//BC
e) Cho HB cắt CK ở N. C/m A, M, N thẳng hàng
cho tam giác ABC vuông tại A, đường cao AD . trên tia đối của tia CB lấy điểm E sao cho AC là tia phân giác của góc DAE.
a\ cmr : tam giác ADB đồng dạng với tam giác CAB
b\ bt AB=12 cm, AC=9cm . tính AD
c\ cmr : CDtrên CE=BD trên DE