a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
Cho tam giác DEF vuông tại D và DF > DE, kẻ DH vuông góc với EF (H thuộc EF). Gọi M là trung điểm của EF. Chứng minh
a, Góc MDH = góc E - góc F
b, EF - DE > DF - DH
cho tam giác DEF vuông tại D và DF > DE, DH vuông góc với ED ( H thuộc EF ) . M là trung điểm EF
a. CM: góc MDH = góc E - góc F
b. CM: EF - DE > DF - DH
Cho tam giác DEF vuông tại D và DF>DE, kẻ DH vuông góc với EF. Gọi M là trung điểm của EF
a)Chứng minh MDH=E-F
b)Chứng minh EF-DE>DF-DH
Cho tam giác DÈ vuông tại D và DF>DE, kẻ DH vuông góc với EF ( H thuộc cạnh EF ). Gọi M là trung điểm của EF.
a) Chứng minh \(\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Chứng minh EF - DE > DF - DH
Cho tam giác DEF cân tại D. Kẻ DH vuông góc với EF (H thuộc EF). Kẻ HM vuông góc với DE (M thuộc DE) và HN vuông góc với DF (N thuộc DF). Góc HDE = góc HDF. CM:
a) HM = HN.
b) Tam giác HME = tam giác HNF.
Cho tam giác DEF cân tại D. Kẻ DH vuông góc với EF (H thuộc EF). Kẻ HM vuông góc với DE (M thuộc DE) và HN vuông góc với DF (N thuộc DF). Góc HDE = góc HDF. CM:
a) HM = HN.
b) Tam giác HME = tam giác HNF.
Cho tam giác DEF cân tại D. Gọi H là trung điểm của EF. a) C/m: t/giác DEH = t/giác DFH và DH vuông góc EF b) Kẻ HM vuông góc DE tại M, HN vuông góc DF tại N. C/m: t/giác HMN cân tại H c) C/m: MN// EF d) Qua E kẻ đường thẳng d vuông góc với DE, qua F kẻ đường thẳng d' vuông góc với DF, đường thẳng d cắt đường thẳng d' tại K. C/m: D, H , K thẳng hàng.
Cho tam giác DEF cân tại D. Gọi M,N lần lượt là trung điểm của DF và DE. Kẻ DH vuông góc với EF (H thuộc EF)
a) C/m HE =HF
b) Cho DE=DF=5, EF=6. Tính DH
c) C/m tam giác DME = tam giác DNF. Từ đó suy ra góc DEM = góc DFN
cho tam giác DEF vuông tại D và DF > DE, kẻ DH vuông góc với EF ( H thuoc canh EF) . goi M la trung diem cua EF.
a) CM \(\widebat{MDH}\)= \(\widebat{E}\)- \(\widebat{F}\)
b) CM EF - DE > DF - DH
ai nhanh cho 2 k. ai nhanh có thùng