a: Xét ΔEDA có ED=EA
nên ΔEDA cân tại E
b: Xét ΔDEB vuông tại D và ΔAEB vuông tại A có
BE chung
ED=EA
DO đó: ΔDEB=ΔAEB
Suy ra: DB=AB
a: Xét ΔEDA có ED=EA
nên ΔEDA cân tại E
b: Xét ΔDEB vuông tại D và ΔAEB vuông tại A có
BE chung
ED=EA
DO đó: ΔDEB=ΔAEB
Suy ra: DB=AB
Cho tam giác DEF vuông tại D (DE < DF). Kẻ tia phân giác của góc DEF cắt DF tại A. Trên cạnh EF lấy điểm B sao cho: EB = ED. 1) Chứng minh rằng: ∆EDA = ∆EBA; 2) Gọi giao điểm của DB và EA là I. Hỏi I có là trung điểm của DB không? Vì sao? 3) Kéo dài BA cắt ED tại K. Chứng minh: DK = BF và DB // KF.
Moị người giúp em với ạ
Cho Tam giác DEF vuông tại (DE < DF).Trên EF lấy điểm A sao cho ED=EA.Tia phân giác của góc E cắt DE tại B. a) Chứng minh tam giác DEB=AEB? b) Gọi I là dao điểm của DA và EB Chứng minh EI là đường trung trực của DA?
c) Trên tia lấy điểm k sao cho EI=IK Chứng minh AK//DE
Cho tam giác DEF vuông tại D, có DEF=60 độ ,EC là tia phân giác của góc E (C thuộc DF). Từ C, vẽ CH vuông góc EF (H thuộc EF)
a) Chứng minh: tam giác DCE= tam giác HCE
b) Cạnh CH kéo dài cắt tia ED tại K. Chứng minh: tam giác CKF cân tại C
c) chứng minh: DH<CF
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Cho tam giác DEF vuông tại D. Tia phân giác của góc E cắt DF tại M. Trên cạnh EF lấy điểm N sao cho EN = DE
a) Chứng minh: Tam giác DEM = tam giác NEM. Từ đó suy ra MN vuông góc với EF
b) Kéo dài MN cắt tia đối của tia DE tại điểm K. Chứng minh tam giác DMK = tam giác NMF
c) Chứng minh EM là đường trung trực của đoạn thẳng FK
~~ Hết~`~
Mọi người giúp em bài này với ạ
Cho tam giác DEF vuông tại D (DE < DF). Kẻ tia phân giác của góc DEF cắt DF tại A. Trên cạnh EF lấy điểm B sao cho: EB = ED. 1) Chứng minh rằng: ∆EDA = ∆EBA; 2) Gọi giao điểm của DB và EA là I. Hỏi I có là trung điểm của DB không? Vì sao? 3) Kéo dài BA cắt ED tại K. Chứng minh: DK = BF và DB // KF.
cho tam giác abc vuông tại a có ab=4cm ac=3cm cạnh AC=3cm trên cạnh AB lấy điểm D sao cho AD=AC trên tia dối của tia Ca lấy điểm E sao AE=AB từ A kẻ AH vuông góc với BC và (H E BC) đường thẳng AH cắt DE tại M
a tính độ dài cạnh BC
chứng minh tam giác ABC = tam giác AED từ đó suy ra tam giác ABE là tam giác gì
chứng minh AM là đường trung tuyến của tam giác ADE
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH