Bạn có thể tham khảo :
https://h.vn/hoi-dap/question/559045.html
Bạn có thể tham khảo :
https://h.vn/hoi-dap/question/559045.html
Cho tam giác ABC cân tại A (AB=AC). Gọi D,E lần lượt la trung điểm của AB và AC
a, C/m tam giác ABE = tam giác ACD
b, C/m BE=CD
c, Gọi K là giao điểm của BE và CD. C/m tam giác KBC cân tại K
d, C/m AK là tia phân giác của góc BAC
Cho tam giác ABC cân tại A. Gọi D và E lần lượt là trung điểm của AB và AC.
a. Chứng minh: Tam giác : ABE= ACD
b. Chứng minh : BE=CD
c. Gọi K là giao điểm của BE và CD. CM. tam giác KBC cân tại K
d. Chứng minh: AK là tia phân giác của góc BAC
Cho tam giác cân ABC cân tại A (AB = AC). Gọi D, E lần lượt là trung điểm của AB AC.
a) Chứng minh tam giác ABE = tam giác ACD.
b) Chứng minh BE = CD.
c) Gọi K là giao điểm của BE và CD. Chứng minh KBC cân tại K.
d) Chứng minh AK là tia phân giác của BAC
ho tam giác cân ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC.
a) Chứng minh tam giác ABE= tam giác ACD.
b) chứng minh BE=CD.
c) gọi K là giao điểm của BE và CD. chứng minh tam giác KBC cân tại K.
d) chứng minh AK là tia phân giác của BAC
Cho tam giác cân tại A. Gọi D, E lần lượt là trung điểm của AB và AC
a) Chứng minh tam giác ABE = tam giác ACD
b) Chứng minh BE = CD
c) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân tại K
d) Chứng minh AK là tia phân giác của góc BAC
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng