a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔOHA=ΔOKC
=>OH=OK
=>O là trung điểm của HK
a: Xét tứ giác ABCD có
O là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét ΔOHA vuông tại H và ΔOKC vuông tại K có
OA=OC
\(\widehat{AOH}=\widehat{COK}\)
Do đó: ΔOHA=ΔOKC
=>OH=OK
=>O là trung điểm của HK
Cho hình bình hành ABCD, dựng AH, CK lần lượt vuông góc DB (H, K thuộc BD)
a) Chứng minh tứ giác AHCK là hình bình hành
b) Lấy O là trung điểm của HK. Chứng minh A, O, C thẳng hàng
c) Cho AH cắt CD tại I, CK cắt AB tại M. CMP: Tứ giác AMCI là hình bình hành
d) O trung điểm IM
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K.
a) chứng minh tứ giác AHCK là hình bình hành
b) gọi O là trung điểm của HK
c/m 3 điểm A,O,C thẳng hàng
Bài 6: Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Từ H kẻ HE và HF lần lượt
vuông góc với AB và AC (EAB, FAC).
a. Chứng minh AH=EF.
b. Trên tia FC xác định điểm G sao cho FG=AF. Chứng minh tứ giác EFGH là hình
bình hành.
c. Gọi O là giao điểm của AH và EF, I là giao điểm của EG và FH, kẻ trung tuyến FK
của tam giác HFC. Chứng minh ba điểm O; I; K thẳng hàng.
cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC và AC.
a) chứng minh ABHK là hình thang.
b) Trên tia đối của tia HA lấy điểm Éao cho H là trung điểm của AE. Chứng minh tứ giác ABEC là hình thoi
C) Qua A vẽ đường thẳng vuông góc với AH cắt tia HK tại D. chứng minh AD =BD.
d) Vẽ HN vuông góc với AB (N thuộc AB), gọ I là trung điêm của AN. Trên tia đối của BH lấy điểm M sao cho B là trung điểm của HM. Chứng minh MH vuông góc HI
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác nhọn ABC, đường cao AH. Gọi M, N lần lượt là trung điểm AB và AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tại D
a) Chứng minh tứ giác BDNC là hình bình hành
b) Tứ giác BDNH là hình gì? Vì sao?
c) Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh DE=2EK
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC, AC.
a) Chứng minh tứ giác ABHK là hình thang.
b) Qua A vẽ đường thẳng vuông góc với AH, cắt tia HK tại D. Chứng minh AD=BH.
c) Vẽ HN vuông góc với AB (N thuộc AB), gọi I là trung điểm của AN. Trên tia đối của tia BH, lấy điểm M sao cho B là trung điểm của HM. Chứng minh MN vuông góc với HI.
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?