cho tam giác ABC vuông tại A, vẽ đường cao AH của tam giác ABC. Từ H vẽ HN vuông AB, HM vuông AC
a) Chứng minh rằng AH và MN cắt nhau tại trung điểm mỗi đường
b) Gọi I,K lần lượt là điểm đối xứng của H qua M và N. Chứng minh A là trung điểm IK
Mấy bạn giải giúp mình bài này nha.
Cho tam giác ABC vuông tại A, hai đường phân giác BD và CE cắt nhau ở I. Gọi M, N lần lượt là hình chiếu của D, E trên BC.
a) Chứng minh tam giác ABM cân.
b) Tính góc MAN
c) Gọi G, K lần lượt là giao điểm của BD và AN, CE và AM. Tia AI cắt GK ở H.
Chứng minh rằng tam giác AHG vuông.
Cho tam giác ABC, gọi E, D lần lượt là trung điểm AB, AC đường thẳng qua A song song với BC, cắt AC tại E, cắt BD, CE lần lượt tại M, N. Chứng minh: A là trung điểm của MN
Cho tam giác ABC cân tại A , đường cao AH . Gọi E,F lần lượt là hình chiếu của H trên AC và AB . Gọi M là trung điểm của CB
a) Chứng minh : AM vuông góc với EF
b) Gọi N là trung điểm của AB và AH cắt NM tại D . Chứng minh : EF //DB
Cho tam giác ABC, đường phân giác của góc B và đường phân giác của C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E, F.
a) Chứng mình BEI, CFI là các tam giác cân.
b) Chứng minh BE + CF = EF.
c) Gọi M là trung điểm của IB, N là trung điểm của IC, các đường thẳng EM, FN cắt nhau tại O. Chứng minh OB = OC.
d) Chứng minh ba điểm A, I, O thẳng hàng.
cho tam giác ABC vuông ở A , đường cao AH , Gọi I ,K lần lượt là các giao điểm các đường phân giác của tam giác ABH , ACH , Đường thẳng IK cắt AB tại M , cắt AC tại N . a) Tính góc IHK b) chứng minh BI vuông góc với AK c) chứng minh AM=AN
Cho tam giác ABC vuông cân tại A. Lấy M trên BC. Gọi H, I lần lượt là hình chiếu của B, C trên AM. Qua B vẽ đường thẳng d vuông góc với BH, đường thawngtr này cắt tia CI tại N.
1) Chứng minh tam giác AIN vuông cân.
2) Gọi E là giao điểm của BH và AN, O là giao điểm của CE và AH. Chứng minh CH = IE và CH song song với IE.
Cho hai đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Gọi M, N lần lượt là trung điểm của BC, CD. Đoạn thẳng AM, AN cắt BD lần lượt tại I và K. Chứng minh:
a) I là trọng tâm của tam giác ABC và K là trọng tâm của tam giác ADC;
b) BI = IK = KD.
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM