Cho tam giác ABC,góc A tù .trên cạnh AC lấy 2 điểm D và E(D nằm giữa A và E).CMR BA<BD<BE<BC
MK cần gấp giúp mk nha
Cho tam giác cân tại A. ( góc A là góc tù) trên cạnh BC lấy điểm E sao cho BE= CD điểm E nằm giữa hai điểm B và D. Kẻ trung tuyến AM của tam giác ABC chứng minh EH, DK,AM cùng đi qua một điểm
cho tam giác abc vuông tại a ( góc a tù ) Trên cạnh bc lấy điểm d và e sao cho bd = ce ( d nằm giữa b và e )
chúng minh tam giác abd = tam giác ace
4)ch tam giác ABC vuông tại A và AB<AC . trên cạnh BC lấy điểm E sao cho BE=BA, kẻ BD là tia phân giác của góc ABC( D thuộc AC)
a)chứng minh: tam giác ABC= tam giác EBD
b)chứng minh: DE vuông góc BC
c)Gọi K là giao điểm của BA và ED. Chứng minh: BK = BC
5)so sánh 2 số : \(^{2^{300}}\) và \(3^{200}\)
Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh BC lấy điểm E sao cho BE= BA, kẻ BD là tia phân giác của góc ABC (D thuộc AC).
a) Chứng minh: ∆ABD = ∆EBD
b) Chứng minh: DE vuông góc với BC
c) Gọi K là giao điểm của BA và ED. Chứng minh: BK = BC
Cho tam giác ABC vuông tại A, vẽ BD là tia phân giác của ABC (D thuộc AC. Trên cạnh BC lấy điểm E sao cho BE=BA. Gọi I là giao điểm của BD và AE. a) Chứng minh: tam giác ABD= tam giác EBD. b) Chứng minh: DE=AD và DE vuông góc BC.
Cho tam giác ABC có góc A là góc tù. Vẽ các tam giác vuông tại B là ABE và CBD sao BE = BA ; BC = BD và C, E nằm cùng phía so với AB; A, D nằm cùng phía so với BC.
a) Chứng minh rằng: AD =CE: AD vuông góc với CE,
b) Gọi M là trung điểm của AC. Chứng minh rằng BM vuông góc với DE; BM = 1/2 * DE
Cho tam giác ABC cân(góc A tù).Trên cạnh BC lấy điểm E và D sao cho BE=CD(E nằm giữa B và D)
a)Chứng minh tam giác ABE = tam giác ACD
b)Kẻ Eh vuông góc với AB tại H,kẻ DK vuông góc với AC tại K.Chứng minh;EH=KD
c)Chứng minh:HK song song với BC
d)Kẻ trung tuyến AM của tam giác ABC.Chứng minh:EH,DK và AM cùng đi qua 1 điểm
Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.
a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.
b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.
c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.
Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.
a) Tính AC
b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.
c) Chứng minh BD đi qua trung điểm của AE.
Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180o ) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.
a) Chứng minh tam giác AOI = tam giác BOI
b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.
c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.
LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~