Xét `ΔCKB` vuông tại K, đường cao KH có: `CK^2=CB.CH` (1)
Xét `ΔCKA` vuông tại K, đường cao KI có: `CK^2=CA.CI` (2)
Từ (1), (2) suy ra: `CB.CH=CA.CI` (đpcm)
Xét `ΔCKB` vuông tại K, đường cao KH có: `CK^2=CB.CH` (1)
Xét `ΔCKA` vuông tại K, đường cao KI có: `CK^2=CA.CI` (2)
Từ (1), (2) suy ra: `CB.CH=CA.CI` (đpcm)
Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh;
Đề bài : Tam giác ABC vuông tại C, đường cao CK. Biết :
a) Gọi H và I lần lượt là hình chiếu của K trên BC và AC. Chứng minh: CB.CH = CA.CI
b) Gọi M là chân đường vuông góc kẻ từ K xuống IH . Chứng minh \(\frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\)
c) Chứng minh \(\frac{AI}{BH}=\frac{AC^3}{BC^3}\)
Bãi 4) Cho tam giác ABC có AB = 6cm; AC = 8cm; BC = 10cm. a) Chứng tỏ tam giác ABC vuông b) Vẽ đường cao AH của tam giác ABC. Tính AH; HC và số đo góc B. c) Gọi E; E lần lượt là hình chiếu của H lên AB; AC. Chứng minh: BH^3 = BE^2.BC.
Cho tam giác ABC vuông tại A có AB= 30cm, AC= 40cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính AH, BH.
c) Gọi I, K lần lượt là hình chiếu của H lên AB và AC. Chứng minh:
1/ IK2 = 1/ AB2 + 1/ AC2 . (dấu " / " nghĩa là phần, thay cho phân số) ; (số 2 kế bên chữ là mủ 2 [bình phương])
Cho tam giác ABC vuông tại A có BC=10cm và đường cao AH = 5cm gọi I; K lần lượt là hình chiếu của H lên AB và AC. Tính diện tích hình AIHK
Cho tam giác nhọn ABC có AB<AC và trực tâm là T. Gọi H là chân đường cao kẻ từ A của tam giác ABC và D là điểm đối xứng với T qua đường thẳng BC; I và K lần lượt là hình chiếu vuông góc của D trên AB và AC; E và F lần lượt là trung điểm của AC và IH
a) Chứng minh ABDC là tứ giác nội tiếp và tam giác ACD và IHD đồng dạng
b) Chứng minh I,H,K thẳng hàng và DÈ là tam giác vuông
c) Chứng minh \(\frac{BC}{DH}=\frac{AB}{DI}+\frac{AC}{DK}\)
Cho tam giác ABC nhọn (AB<AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. Gọi H là giao điểm của BE và CF
a) Đường cao FQ của tam giác BFC cắt BE ở I chứng minh AB là tiếp tuyếncủa đường tròn (EFI)
b) Gọi K là hình chiếu của E trên BC. chứng minh BK<CQ