a: Xét ΔHAB có HI/HB=HM/HA
nên IM//AB
=>IM vuông góc BC
a: Xét ΔHAB có HI/HB=HM/HA
nên IM//AB
=>IM vuông góc BC
Cho tam giác ABC vuông tại A có B ^ = 55 ° . Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB.
a) Tính số đo A C B ^
b) Chứng minh ∆ A B C = ∆ C D A và AD//BC.
c) Kẻ A H ⊥ B C ( H ∈ B C ) và C K ⊥ A D ( K ∈ A D ) . Chứng minh BH = DK.
d) Gọi I là trung điểm của AC. Chứng minh ba điểm H, I, K thẳng hàng và 3 đường thẳng AC, HK, BD cùng gặp nhau ở I.
Cho tam giác ABC vuông tại A có 0 B 55 . Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Cx vuông góc với AC. Trên tia Cx lấy điểm D sao cho CD = AB a) Tính số đo góc ACB b) Chứng minh ABC CDA và AD // BC c) Kẻ AH BC( H BC) và CK AD ( K AD). Chứng minh BH = DK d) Gọi I là trung điểm của AC. Chứng minh ba điểm H,I,K thẳng hàng và 3 đường thẳng AC,HK,BD cùng gặp nhau ở I
cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM=CK
b, chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MH, Q là giao điểm của AC và MK. chứng minh PQ // BC
cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM=CK
b, chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MH, Q là giao điểm của AC và MK. chứng minh PQ // BC
Cho tam giác ABC vuông cân tại A. Trên cubgf một nửa mặt phẳng chứa A bờ BC vẽ các tia Bx,Cy cùng vuông góc với BC. Lấy M nằm giữa B và C. Đường thẳng vuông góc với AM tại A cắt Bx và Cy lần lượt tại H và K. Chứng minh
a) BM = CK
b) A là trung điểm của HK
c) Gọi P là giao điểm của AB và MH và Q là giao của AC và MK. Chứng minh PQ//BC
cho tam giác ABC vuông tại A , trên nửa mặt phẳng bờ là mặt phẳng AB không chứa điểm C , vẽ tia Bx vuông góc BA . Trên tia Bx lấy điểm M sao cho MB = AC . trên nửa mặt phẳng có bờ là đường thẳng AC và không chứa điểm B, vẽ tia Cy vuông góc AC . trên tia Cy lấy điểm N sao cho CN = AB , cm : a, tam giác ABM = tam giác NCA
b, NA // BC
c, A là trung điểm MN
Cho tam giác ABC vuông cân tại A, gọi M là trung điểm của cạnh BC, lấy điểm D trên đoạn BM. Kẻ BH, CK lần lượt vuông góc với tia AD tại H và K. Trên nửa mặt phẳng bờ AB chứa điểm C, kẻ tia Bx sao cho góc ABx =135 độ. Lấy E trên đoạn thẳng AB, qua E kẻ đường thẳng vuông góc với EC cắt Bx tại F. Chứng minh EC=EF.
Bài 3 : cho tam giác ABC có AB=AC , gọi H là trung điểm của BC . Trên nửa mặt phẳng bờ AB chứa điểm C kẻ tia Bx vuông góc với AB, trên nửa mặt phẳng bờ AC chứa điểm B kẻ tia Cy vuông góc với AC, Bx và Cy cắt nhau tại E . CM 3 điểm A,H,E thẳng hàng
cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM=CK
b, chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MH, Q là giao điểm của AC và MK. chứng minh PQ // BC
>< giúp mình càng nhanhh càng tốt nhaa
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên đường thẳng vuông góc
với BC tại B lấy điểm Dkhoong cùng một nửa mặt phẳng bờ BC với ddierm A sao cho AH=BD
a) Chứng minh tam giác AHB = tam giác DBH
b) Chứng minh AB // HD
c) Gọi I là giao điểm của AD là BC. Chứng minh I là trung điểm của BH