b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC vuông tại A. Lấy M là trung điểm BC. Trên tia đối của tia MA lấy điểm D để MA = MD. a) Chứng minh: ∆MAB = ∆MDC b) Chứng minh AB // CD c) Chứng minh: ∆ABC = ∆CDA và BC = AD d) Lấy E là trung điểm của AC. Kẻ MF ⊥ BD . Chứng minh E, M, F thẳng hàng.
Cho tam giác ABC có AB=AC, M là trung điểm của BC.Trên tia đối của tia Ma lấy điểm D sao cho AM=MD.
a. Chứng minh tam giác AMB= tam giác DCM.
b.Chứng minh AB// DC.
c. Chứng minh AM vuông góc với BC
Cho tam giác nhọn ABC (AB<AC),M là trung điểm của BC.Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a/ Chứng minh: tam giác AMB bằng tam giác DMC
b/ Vẽ AH vuông góc BC (H thuộc BC), DE vuông góc BC (E thuộc BC). Chứng minh AH=DE
c/ Gọi I là trung điểm của AH,K là trung điểm ưa ĐỂ .Chứng minh: ba điểm I,M,K thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh rằng: AB = DC và AB // DC.
b) Chứng minh rằng:
Tam giác ABC=tam giác CDA
từ đó suy ra Am=BC trên 2
c) Trên tia đối của tia AC lấy điểm E sao cho AE=AC. Chứng minh rằng:
BE// AM.
d) Tìm điều kiện của tam giác ABC để AC bằng BC trên 2
e) Gọi O là trung điểm của AB. Chứng minh rằng: Ba điểm E, O, D thẳng
hàng.
Cho tam giác ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a)Chứng minh: tam giác MAB = tam giác MDC
b)Kẻ AH vuông góc với BC tại H, kẻ Dk vuông góc với BC tại K
c)Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE = DF. Chứng minh: 3 điểm E,M,F thẳng hàng
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA, lấy điểm D sao cho: MD = MA. Chứng minh rằng:
a) ∆BMD = ∆CMA
b) AB // CD
c) Vẽ Ax//BC. Ax cắt DB kéo dài tại E. Chứng minh B là trung điểm của ED
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: tam giác MAB = tam giác MDC
b) Chứng minh: AB // CD và tam giác ABC = tam giác CDA
c) Chứng minh: Tam giác BDC vuông tại D
cho tam giác ABC . Gọi M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác ABM=tam giác DCM và AB///DC
b) Kẻ BE vuông góc với AM( E thuộc AM ), CF vuông góc với DM( F thuộc DM ). Chứng minh: M là trung điểm của EF
Cho tam giác ABC, M là trung điểm của cạnh AC. Trên tia đối của tia MB lấy D sao cho MD =MB.
a/ Chứng minh: tam giác AMB = tam giác CMD
b/ Chứng minh: ABC= CDA (GÓC)
c/ Vẽ CE vuông góc với AD tại E, AF vuông góc với BC tại F. Chứng minh: BF=ED
d/ Chứng minh: 3 điểm F,M,E thẳng hàng.