a: Xét ΔHEB vuông tại E và ΔCHA vuông tại H có
\(\widehat{EHB}=\widehat{HCA}\)
Do đó: ΔHEB\(\sim\)ΔCHA
Suy ra: \(\dfrac{HE}{CH}=\dfrac{BH}{AC}\left(1\right)\)
Xét tứ giác AEHF có
\(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: HE=AF(2)
từ (1) và (2) suy ra \(\dfrac{AF}{CH}=\dfrac{BH}{AC}\)