a: \(BC=\sqrt{5^2+2.5^2}=\dfrac{5\sqrt{5}}{2}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot2.5}{\dfrac{5\sqrt{5}}{2}}=\sqrt{5}\left(cm\right)\)
\(HC=\dfrac{AC^2}{CB}=\dfrac{2.5^2}{\dfrac{5\sqrt{5}}{2}}=\dfrac{\sqrt{5}}{2}\left(cm\right)\)
b: Xét ΔBAC vuông tại A có AH là đường cao
nên \(HC\cdot BC=AC^2\)
\(\Leftrightarrow HC\left(HC+5\right)=2.5^2\)
\(\Leftrightarrow HC^2+5HC-6.25HC=0\)
\(\Leftrightarrow HC=\dfrac{5\sqrt{2}-5}{2}\left(cm\right)\)
\(AH=\sqrt{5\cdot\dfrac{5\sqrt{2}-5}{2}}\simeq2,76\left(cm\right)\)