a, Ta có : \(AB=\frac{2}{3}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{144}=\frac{1}{\left(\frac{2}{3}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=6\sqrt{13}\)cm
=> \(AB=\frac{2}{3}.6\sqrt{13}=4\sqrt{13}\)cm
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=8\)cm
Theo định lí Pytago tam giác AHC vuông tại H
\(CH=\sqrt{AC^2-AH^2}=18\)cm
=> BC = HB + HC = 8 + 18 = 26 cm
b, Vì AM là đường trung tuyến tam giác ABC => BM = MC = BC / 2 = 13 cm
Ta có : BH + MH = BM => MH = BM - BH = 13 - 8 = 5 cm