ta có sina = AH/AC, cosa= CH/AH ,góc AMH =2a, cos2a =HM/AM =HM /a ,sin2a =AH/AM=AH/a.
=>2sina.cosa =2 . AH/AC.CH/AC= 2AH.CH/AC2 =2AH.CH/BC.CH=2AH/2a=AH/a =sin2a
(:p)
ta có sina = AH/AC, cosa= CH/AH ,góc AMH =2a, cos2a =HM/AM =HM /a ,sin2a =AH/AM=AH/a.
=>2sina.cosa =2 . AH/AC.CH/AC= 2AH.CH/AC2 =2AH.CH/BC.CH=2AH/2a=AH/a =sin2a
(:p)
cho tam giác ABC vuông tại A, AB= 3cm, FK= 5cm.
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH, đường trung tuyến AM. Tính AH, AM
c) Tính diện tích tam giác ABH
d) Từ H kẻ HM vuông góc AB, HN vuông góc AC. Chứng minh AM. AB=AN.AC
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Kẻ HD vuông góc AB, kẻ HE vuông góc AC. CHỨNG MINH : AM VUÔNG GÓC DE
Bài 3.Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH, trung tuyến AM.
a) Chứng minh rằng AB^2= 2BH.AM.
b) Từ B vẽđường vuông góc với trung tuyến AM cắt AH tại D; cắt AM tại E và cắt AC tại F. Chứng minh: BE.BF = BH.BC = AF.AC.
Cho tam giác ABC vuông tại A có AB bằng 3 cm BC = 5 cm a tính AC, góc B góc c b) phân giác của góc A cắt BC tại E Tính BE CE d)kẻ đường c kẻ đường cao AH và đường trung tuyến AM tính diện tích tam giác AMH
Cho tam giác ABC vuông tại A, đường cao AH.
a. Tính AH, biết AB = 6 cm, AC = 8 cm.
b. AM là đường trung tuyến tam giác ABC. CM AB2 = 2AM.BH
c. Kẻ BE vuông góc với AM tại E, cắt AH tại D và AC tại F. CM BE.BF = BH.BC
d. CM \({SABF\over SABC} = {BH\over CH}\)
Cho tam giác ABC vuông ở A, AH và AM tương ứng là đường cao và đường trung tuyến kẻ từ A của tam giác đó. Qua điểm A kẻ đường thẳng mn vuông góc với AM. Chứng minh: AB và AC tương ứng là tia phân giác của các góc tạo bở AH và hai tia Am, An của đường thẳng mn.
Cho tam giác ABC có góc A = 90 độ. BC cố định. Kẻ trung tuyến AM, đường cao AH. Qua B kẻ Bx vuông góc BC; qua C kẻ Cy vuông góc BC. Qua A kẻ đường vuông góc AM cắt Bx, Cy lần lượt ở D, E. Nối AC cắt Bx ở P. Dm giao AB tại Q, EM giao AC tại K. a, Chứng minh: PM vuông góc BE tại O và MO.MP không đổi khi A di động ( sao cho góc BAC = 90 độ ) b, Gọi giao DC và BE là I. Chứng minh: ba điểm A,I,H thẳng hàng và I là trung điểm của AH.
Cho tam giác ABC vuông tại A. góc C nhỏ hơn 45 độ, trung tuyến AM, đường cao AH. Biết BC = a, AC = b và AH = h
a) Tính sin C, cos C, sin 2C theo a,b,h
b) CMR sin 2C = 2 sin C. cos C
Cho tam giác ABC vuông tại A, có đường cao AH và dường trung tuyến AM; AB=6,AC=8. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a.cm:AD.AB=AE.AC
b. Cm AM vuông góc DE