Gọi r là bán kính của đường tròn nội tiếp . Dễ dàng tính được
...
nếu rảnh có thể tham khảo tại
Trường Toán Pitago – Hướng dẫn Giải toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Gọi r là bán kính của đường tròn nội tiếp . Dễ dàng tính được
...
nếu rảnh có thể tham khảo tại
Trường Toán Pitago – Hướng dẫn Giải toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
Cho Tam Giác ABC(AB<AC)Vuông Tại A và nội tiếp đường tròn (O;R) . Gọi M là trung điểm của AC và AH là đường cao của Tam Giác ABC .1/ Chứng Minh Tứ Giác AMOH nội Tiếp . Xác Định Tâm I Của Đường Tròn này.
.2 /Đường TrÒN (I) cắt AB Tại N . Chứng Minh MNI Thẳng Hàng .
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giáo ABC, các tiếp điểm trên BC, CA, AB lần lượt là D,E,F. Gọi M là trung điểm của AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của tam giác ABC tại P. Chứng minh tam giác ANP là tam giác cân.
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm BC, CA, AB lần lượt là D, E, F. Gọi M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của △ABC tại P.
Chứng minh rằng tam giác APN là tam giác cân
Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm. Gọi I là tâm đường tròn nội tiếp tam giác ABC, G là trọng tâm của tam giác ABC. Tính độ dài IG
Cho Tam Giác ABC(AB<AC)Vuông Tại A và nội tiếp đường tròn (O;R) . Gọi P là trung điểm của AC và AH là đường cao của Tam Giác ABC .
1/ Chứng Minh Tứ Giác APOH nội Tiếp . Xác Định Tâm I Của Đường Tròn này.
2/ Chứng Minh (O) và (I) Tiếp Xúc Nhau .
3/ Đường Tron (I) cắt AB Tại N . Chứng Minh N,I,P Thẳng Hàng .
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp của tam giác ABC, tam giác AHB, tam giác AHC. Chứng minh AI vuông góc JK.
Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC
. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .
1) Chứng minh rằng BCQP là tứ giác nội tiếp.
2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .
3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác
BCQP . Chứng minh rằng I , H, K thẳng hàng.
Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC
. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .
1) Chứng minh rằng BCQP là tứ giác nội tiếp.
2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .
3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác
BCQP . Chứng minh rằng I , H, K thẳng hàng.