Cho tam giác ABc vuông tại A. Vẽ AH vuông góc với BC tại H.
a) Tìm góc bằng góc C.
b) Chứng minh rằng AB^2+CH^2=AC^2+BH^2
Cho tam giác ABC vuông tại A, AH vuông góc với BC tại H. M thuộc BC sao cho BM=BA. MN vuông góc với AC(N thuộc AC)CMR:
a)Tam giác AHN cân
b)BC+AH>AB+AC
c)\(2AC^2-BC^2=CH^2-BH^2\)
Cho △ABC có góc B và góc C là góc nhọn, AH ⊥ BC tại H. Các khẳng định nào sau đây là sai?
A. AH < AB, AH < AC
B. HB < AB, HC < AC
C. Nếu góc HBA < góc HCA thì HB < HC
D. Nếu AB < AC thì góc HAB < góc HAC
cho tam giác ABC vuông tại A , vẽ AH vuông góc với BC tại H biết AB= 12cm , AC = 9cm . Tính AH,BH,CH
Cho tam giác vuông tại A có AC>AB , vẽ AH vuông góc BC tại H . Chứng minh a ) Góc B > C b) HC>HB( chứng minh bằng 2 cách ) c) Góc B = góc HAC và góc C=HAB d) HC>AH và AH>BH
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh hệ thức: AB*2 +CH*2 = AC*2 + BH*2. Suy ra rằng nếu AB > AC thì BH> CH
Cho tam giác ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài tam giác ABC vẽ các tam giác ABD và ACE vuông cân tại A. Đường thẳng AH cắt DE tại M.
a) Chứng minh: BD^2+CE^2=2.(AB^2+AC^2)=2.BH^2+4.AH^2+2.CH^2
b) Vẽ DP vuông góc AH tại P, EQ vuông góc AH tại Q. Chứng minh AP = BH
c) Chứng minh M là trung điểm của DE
d) Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F. Chứng minh F, A, H thẳng hàng.
Tam giác ABC có góc A tù, B ^ > C ^ . Trong các khẳng định sau, khẳng định nào đúng?
A. BC >AC >AB.
B. AC >AB >BC.
C. BC >AB > AC.
D. AB > AC > BC.
Cho tam giác ABC vuông tại A. Vẽ AH vuông góc BC tại H.
a) Tìm góc bằng góc C
b) CMR : \(AB^2+CH^2=AC^2+BH^2\)