Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Thu

 Cho tam giác ABC  vuông tại A và AB =12cm, AC =16cm .Đường phân giác góc A cắt BC  tại D
         a) Tính BC ,BD vad CD                ĐS: BC =20cm ,  BD≈8,6cm   ,DC≈11,4 cm
         b) Vẽ đường cao AH .Tính AH ,HD và AD         ĐS: AH ≈9.6 cm , HD ≈1,4cm , AD ≈9,7 cm

Akai Haruma
13 tháng 1 lúc 13:56

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất đường phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$ nên:

$BD=20:(3+4).3=\frac{60}{7}$ (cm) 

$CD= 20:(3+4).4=\frac{80}{7}$ (cm) 

b.

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm) 
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm) 

$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

Akai Haruma
13 tháng 1 lúc 13:58

Hình vẽ:

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=20^2\)

=>\(BC=20\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{12}=\dfrac{CD}{16}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>\(AH=\dfrac{192}{20}=9,6\left(cm\right)\)

Ta có: ΔAHB vuông tại H

=>\(HB^2+AH^2=AB^2\)

=>\(HB^2=12^2-9,6^2=51,84\)

=>\(HB=\sqrt{51,84}=7,2\left(cm\right)\)

=>HC=BC-HB=12,8(cm)

Vì CD<CH

nên D nằm giữa C và H

=>CD+DH=CH

=>\(DH=12.8-\dfrac{80}{7}=\dfrac{48}{35}\left(cm\right)\)

ΔAHD vuông tại H

=>\(AH^2+HD^2=AD^2\)

=>\(AD^2=\left(\dfrac{48}{35}\right)^2+9,6^2=\dfrac{4608}{49}\)

=>\(AD=\sqrt{\dfrac{4608}{49}}=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)


Các câu hỏi tương tự
Lufy Nguyễn
Xem chi tiết
Đăng
Xem chi tiết
Phan Hoàng Quốc Khánh
Xem chi tiết
A Inz
Xem chi tiết
phamthihavy
Xem chi tiết
llê anh thư
Xem chi tiết
Trí Thắng Vũ
Xem chi tiết
Vũ Đoàn
Xem chi tiết
Lê Thị Thuý Hằng
Xem chi tiết