Cho tam giác ABC vuông tại A (AB<AC) trên tia đối của tia AB lấy điểm D sao cho AD =AB. chứng minh tam giác ABC = tam giác ADC. Gọi M là trung điểm BC đường thẳng qua B và song song với CD cắt DM tại K chứng minh BK = CD. Qua A kẻ đường thẳng song song với BC cắt CD tại M chứng minh tam giác AMC cân
Bài 5: Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt AC tại N. Biết AN=MN; BN cắt AM ở O. Chứng minh:
a) Tam giác ABC cân ở A
b) O là trọng tâm của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A, phân giác CD. Gọi H là hình chiếu của điểm B trên đường thẳng CD. Trên CD lấy điểm E sao cho H là trung điểm của DE. Gọi F là giao điểm của BH và CA. Chứng minh:
a) Góc CEB= góc ADC và Góc EBH= góc ACD
b) BE vuông góc BC
C) DF song song BE
Bài 7: Cho tam giác ABC vuông tại A, có AC=12cm, BC-13cm. Gọi I là trung điểm của BC. Trên tia AI lấy điểm K sao cho IA=IK
a) Tính AB
b)Chứng minh rằng: Tam giác IAB= tam giác IKC, từ đó suy ra tam giác ACK là tam giác vuông
c) Gọi điểm M là trung điểm của AC.Chứng minh: MB=MK
d) MK cắt BC tại N,BM cắt AI tại E. Chứng minh: tam giác MEN cân;EN song song BK
Bài 8: Cho tam giác ABC vuông tại A, có AB= 8cm, BC= 17cm
a) Tính AC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh: Góc DBC= góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BEC vuông. Suy ra DF là phân giác của góc ADE
d) Chứng minh: BE vuông góc với FC
Cho tam giác ABC vuông tại A , có AB = 9cm , BC = 15cm . Trên tia đối của AB lấy điểm D sao cho A là trung điểm của BD
a) Tính độ dài AC
b) Chứng minh tam giác ABC bằng tam giác ADC
c) Gọi E là trung điểm của đoạn DC , BE cắt AC tại M . Chứng minh góc MDC bằng góc MBC
d) Từ A vẽ đường thẳng song song với DC , đường này cắt BC tại K . Chứng minh D , M , K thẳng hàng
( Nhớ vẽ hình )
Cho tam giác ABC cân tại A (góc A<90 độ) . Trên cạnh AB và cạnh AC lần lượt lấy điểm D và E sao cho AD = AE.
a/ Chứng minh: tam giác ADC =tam giác AEB
b/ Gọi F là giao điểm của BE và CD. Chứng minh: tam giác FBC là tam giác cân
c/ Chứng minh: AF là tia phân giác của BC và AF đi qua trung điểm M của BC.
d/ Qua C vẽ đường thẳng song song với AB. Đường thẳng này cắt tia DM tại K. Chứng minh: CK = CE
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
Cho tam giác ABC có AB < AC, tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: Tam giác BDE là tam giác cân và AD là phân giác của góc BDE.
b) Gọi M là giao điểm của BE và AD. Chứng minh M là trung điểm của BE và AD vuông góc với BE.
c) Qua E vẽ đường thẳng song song với AB và cắt đường thẳng AD tại F. Chứng minh: M là trung điểm của AF.
d) Chứng minh: BF song song với AE.
cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB=AD.
a) C/m: Tam giác ABC=tam giác ADC
b)Biết AC=8cm, BC=10cm. So sánh các góc của tam giác ABC
c)Gọi N là trung điểm của BC, đường thẳng qua B song song với CD cắt DN tại K. C/m: DN=NK. Từ dó =>2DN<DC+DB
d)Đường thẳng qua A song song với BC cắt CD tại M. C/m: M là trung điểm của CD.
cho tam giác ABC vuông tại A có AB=6cm, BC=10cm
a) Tính độ dài cạnh AC
b) Gọi M là trung điểm của BC, vẽ MD vuông góc với AC tại D. Trên tia đối của tia MD lấy điểm E sao cho ME=MD. Chứng minh tam giác CMD= tam giác BME
c) chứng minh AC song song BE
d) gọi G là giao điểm của Am và BD. Chứng minh G là trọng tâm tam giác ABC
cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a) Chứng minh rằng: tam giác CBD cân
b) Gọi M là trung điểm của CD . Đường thẳng đi qua D và song song vớ BC cắt đường thẳng BM tại E. CMR: BC+BD> BE
c) Gọi K là giao điểm của AE và DM. CMR: BC=3DK