a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>E,D,F thẳng hàng
c: BA=BA
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>AD=ED
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>E,D,F thẳng hàng
c: BA=BA
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
bài1:Cho tam giác ABC vuông tại A .Trên cạnh BC lấy điểm E sao cho BE=BA,trên tia BA lấy điểm F sao cho BF=BC.Kẻ tia BD là tia phân giác của góc ABC (D thuộc AC).chứng minh.
a,tam giác ABD=tam giác EBD từ đó suy ra AD=ED
b,Ba điểm E,D,F thẳng hàng
c,BD là đường trung trực của đoạn thẳng AE và AD<DC
nhanh nhanh nha em gấp lắm ạ
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA, trên tia BA lấy điểm F sao cho BF=BC. Kẻ tia BD là tia phân giác của góc ABC (D thuộc AC). Chứng minh rằng:
a) tam giác ABD= tam giác EBD từ đó suy ra AD=ED
b) BD là đường trung trực của đoạn thẳng AE và AD<DC
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AB=BE. Trên tia đối của tia AB lấy điểm F sao cho AF=EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABC = Tam giác EBD, DE vuông góc với BC
B)BD là đường trung trực cỉa đoạn thẳng AE
C) Ba điểm D,E,F thẳng hàng
d) Tính độ dài đoạn thẳng FC khi AC=5cm, góc ACB= = 300
Cho tam giác ABC vuông tại acos phân giác BD ( D thuộc AC) . Trên cạnh BC lấy điểm E sao cho AB= BE .Trên tia đối của tia AB lấy điểm f sao cho Af= EG gọi I là giao điểm của BD với Fc .CM
a, tam giác ABD = tam gác EBD và DE vuông góc BC
B, BD là đường trung trực của đoạn thẳng AE
c, BA điểm D,E,F thẳng hàng
d, Điểm d cách đều ba cạnh của tam giác AEI
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc BC (E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh
a/ Tam giác ABD=tam giác EBD
b/ BD là đường trung trực của đoạn thẳng AE
c/ AD<DC
d/ Góc ADF=góc EDC và E,D,F thẳng hàng
C1:Cho tam giác ABC.Kẻ AH vuông góc với BC .Trên tia đối của tia AH lấy D sao cho AH=AD.Gọi E là trung điểm của HC , F là gia điểm của AC và DE.Chứng minh: a, AF=1/3 AC b, H,F và trung điểm của M của DC thẳng hàng ; c, HF=1/3 CD. |
1.Cho tam giác ABC có AB=AC . Kẻ tia phân giác AD của góc BAC (D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC.Chứng minh rằng:
a)Tam giác ABE=Tam giác ACE
b)AE là đường trung trực của đoạn thẳng BC
2.Cho tam giác ABC có AB<AC .Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng :
a)Tam giác ADF=Tam giác ACD
b)Tam giác BDF=Tam giác EDC
c)BF=AC
d)AD vuông góc FC
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho
AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB=DE;BF=CE
b) Ba điểm F ,D ,E thẳng hàng
c) BE// FC; AD⊥FC
Bài 4. Cho tam giác ABC có AB < AC và phân giác AD (D ∈ BC). Trên AC lấy điểm E sao cho
AE = AB. Trên tia AB lấy điểm F sao cho AC = AF. Chứng minh:
a) DB DE BF CE = = ;
b) Ba điểm F D E , , thẳng hàng
c) BE FC AD FC / / ; ⊥