a) Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD(gt)
Do đó: ΔAHC=ΔDHC(hai cạnh góc vuông)
b) Ta có: AH=HD(gt)
mà H nằm giữa A và D(gt)
nên H là trung điểm của AD
Xét ΔDAK có
H là trung điểm của AD(gt)
C là trung điểm của KD(gt)
Do đó: HC là đường trung bình của ΔDAK(Định nghĩa đường trung bình của tam giác)
Suy ra: HC//AK và \(HC=\dfrac{AK}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay AK//BC(đpcm)