Cho tam giác ABC vuông tại A. Gọi BD là tia phân giác của góc B (D thuộc
AC). Kẻ DE vuông góc với BC (E thuộc BC)
a) Chứng minh rằng ∆ADB = ∆eDB
b) Chứng minh rằng BD là đường trung trực của đoạn thẳng AE.
c) Kẻ AH vuông góc với BC tại H (H thuộc BC). AH cắt BD tại I. Chứng minh tam
giác AID cân.
d) Chứng minh BD vuông góc với CA
e) Chứng minh ba đường thẳng BA, ED, CA đồng quy
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>AB=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)
Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)
Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)
\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
mà \(\widehat{DBC}=\widehat{ABD}\)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔADI cân tại A