Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lelemalin

Cho tam giác ABC vuông tại A, đường trung tuyến CN

a) Biết BC = 10cm, AC = 6cm. Tính đọ dài đoạn thẳng AB, BN?

b) Trên tia đối của tia NC lấy điểm D sao cho ND = NC. Chứng minh: AC = BD, AC //BD

c) C/m: AC + BC > 2CN

d) Gọi G là điểm trên đoạn thẳng AN sao cho AG = 2/3 AN. Gọi M là giao điểm của CG và AD, P là giao điểm của BM và CD. Chứng minh: CD = 3PD

Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 22:31

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AC^2+AB^2\)

\(\Leftrightarrow AB^2=10^2-6^2=64\)

hay AB=8(cm)

mà N là trung điểm của AB(gt)

nên \(BN=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

b) Xét ΔANC và ΔBND có

NA=NB(gt)

\(\widehat{ANC}=\widehat{BND}\)(hai góc đối đỉnh)

NC=ND(gt)

Do đó: ΔANC=ΔBND(c-g-c)

Suy ra: AC=BD(hai cạnh tương ứng) và \(\widehat{ACN}=\widehat{BDN}\)(hai góc tương ứng)

mà hai góc này là hai số ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)


Các câu hỏi tương tự
ID Mini World: 71156040
Xem chi tiết
Trần Thị Quỳnh Anh
Xem chi tiết
lutufine 159732486
Xem chi tiết
VN studios
Xem chi tiết
khải nguyên gia tộc
Xem chi tiết
Thảo
Xem chi tiết
trần duy anh
Xem chi tiết
Thuận Nguyễn
Xem chi tiết
Lê Thùy Ánh
Xem chi tiết