cho tam giác ABC vuông tại A đường trung tuyến AM.Trên tia đối tia MA lấy điểm D sao cho DM=MA a) chứng minh tam giác AMB=tam giác DMC, từ đó suy ra AB= DC b) chứng minh AD=BC c) kẻ AH là đường cao của tam giác ABC. Trên tia đối tia CD lấy điểm I sao cho CI=CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. chứng minh AE=BC
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a) Ta có: ΔAMB=ΔDMC(cmt)
nên AB=DC(hai cạnh tương ứng)
b) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AM=\dfrac{AD}{2}\)(M là trung điểm của AD)
nên AD=BC(Đpcm)