a: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
góc ABM=góc EBM
=>ΔBAM=ΔBEM
b: AM=ME
ME<MC
=>AM<MC
a: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
góc ABM=góc EBM
=>ΔBAM=ΔBEM
b: AM=ME
ME<MC
=>AM<MC
Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt AC tại M. Kẻ ME vuông góc BC (E thuộc BC). Đường thẳng EM cắt BA tại I.
a) Chứng minh: Tam giác ABM = tam giác EBM
b) Chứng minh: BM là đường trung trực của AE
c) So sánh AM và MC
d) Chứng minh tam giác BCI cân
Cho tam giác ABC vuông tại A(AC<AB),đường phân giác CD (D thuộc AB), DE vuông góc BC tại E . Tia ED cắt tia CA tại M .Chứng minh
a. Tam giác DAC = Tam giác DEC
b. Tam giác ACE cân và AE song song với MB
c. Neu BC =2AC thì DM=2DE
Cho tam giác ABC cân tại A. Kẻ đường trung tuyến BM .Từ M kẻ ME vuông góc với AB,MF vuông góc với AC(E thuộc AB,F thuộc AC).Chứng minh:
a)Tam giác BEM= tam giác CFM
b)AM là đường trung trực của EF
c)EF//BC
Bài 4: Cho tam giác ABC vuông tại B. M là trung diểm BC. Đường thẳng vuông góc với BC tại C cắt tia AM tại E. Chứng minh:
a) 2 tam giác ABM =ECM ; b) AC//BE
; c) AB>AE-BC/2
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác AMB = tam giác AMC.
b) Kẻ ME vuông góc AB (E thuộc AB), MF vuông góc AC (F thuộc AC). Chứng minh tam giác MEF cân.
c)Chứng minh AM vuông góc EF
d)Kẻ EI vuông góc với BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. Chứng minh A là trung điểm của KF
Vẽ thêm hình nữa nhé
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC vuông tạiA.Tia phân giác của góc B cắt AC tại Đ.KẻH vuông góc với BC tại H a chứng minh tam giác ABD=tâm giác HBD b Hai đường thẳng DH và AB cắt nhau tại E.Chứng mình tam giác BEC cân c chứng minh AD bé hơn DC
Cho tam giác ABC cân ở A. Trên cạnh BC lấy M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc AB; NF vuông góc AC ( E thuộc AB; F thuộc AC ) EM cắt FN tại H. Chứng minh:
a) Tam giác ABM = tam giác CAN
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC
c) Tam giác MEB = tam giác NFC
d) EF // BC
e) A, D, H thẳng hàng
Cho tam giác ABC cân ở A. Trên cạnh BC lấy M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc AB; NF vuông góc AC ( E thuộc AB; F thuộc AC ) EM cắt FN tại H. Chứng minh:
a) Tam giác ABM = tam giác CAN
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC
c) Tam giác MEB = tam giác NFC
d) EF // BC
e) A, D, H thẳng hàng