a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
Bạn ơi câu a bạn làm chưa chặt chẽ ở chỗ giả thiết chưa cho 3 điểm A, D, E thẳng hàng nên chưa thể kết luận là A là trung điểm của DE được