Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E là h/chiếu của H trên AB, AC. C/m:
a.\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b. \(DE^3=BD.CE.BC\)
c. \(\frac{AB^3}{AC^3}=\frac{DB}{EC}\)
Cho tam giác ABC cân tại A. Kẻ đường cao AH, BK, CI. C/m:
a. \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b. \(DE^3=BD.CE.BC\)
c. \(\frac{AB^3}{AC^3}=\frac{DB}{EC}\)
Cho tam giác ABC vuông tại A, AB<AC, đường cao AH. Kẻ HE vuông góc với AB, HF vuông góc với AC. AH cắt EF tại O. CMR:
1. AE.AB=AF.AC
2.AH^2 = AE.AB+AF.AC
3.AH^3 = BH.HE.HF
4.HB.HC=4 OE.OF
5. \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
6. \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
7. \(\sqrt{EH.EB}+\sqrt{FH.FC}=\sqrt{AH.BC}\)
Cho tam giác ABC vuông tại A ; đg cao AH . Biết \(\frac{AH}{AC}=\frac{3}{5}\) và AB=15 cm
a. Tính BH , CH
b. Gọi E,F lần lượt là hình chiếu của H lên AB;AC . C/M : AH^3=BC.BE.CF
c. C/M : trung tuyến AM của tam gáic ABC vuông góc với EF
d. giả sử S ABC=2 S AEHF . C/M : ABC vuông cân
Cho tam giác ABC vuông tại A, đường cao AH. Biết\(\frac{AB}{AC}=\frac{20}{21}\) và AH=420. Tính chu vi tam giác ABC
GIÚP VỚI CẦN GẤP
Cho tam giác ABC vuông tại A , đường cao AH . Biết \(\frac{AB}{AC}\)= \(\frac{20}{21}\) và AH = 420 . Tính chu vi tam giác ABC
Cho tam giác ABC cân tại A , các đường cao AH và BK . Qua B kẻ đường thẳng vuông góc BC cắt đường thẳng AC tại D . CMR \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Cho tam giác ABC vuông ở A , đường cao AH , BC= 100 , AH =48
a, Tính AB , AC
b, Từ B vẽ tia BX sao cho góc ABx = góc ACB . BX cắt AC tại D
Chứng Minh\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)
Bài 2: Cho tam giác ABC (góc A= 900); AH vuông góc với BC. Gọi E,F thứ tự là hinhfchieeus của H trên AB,AC .
a)Cmr: AE.AB=À.AC
b)Cmr: \(\frac{BH}{CH}\)=\(\left(\frac{AB}{AC}\right)^2\)
c)Cmr: \(\frac{BE}{CF}=\left(\frac{AB}{AC}\right)^3\)
d)Cmr: \(^{AH^3=BC.BE.CF}\)