Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quốc An Nguyễn

Cho tam giác ABC vuông tại A đường cao AH gọi E F lần lượt là hình chiếu của h trên AB AC m là đường trung tuyến của tam giác chứng minh AM vuông góc với EF

 

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 14:37

Gọi O là giao của EF và AH, K là giao AM và EF

Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn

Do đó \(OE=OF=OH=OA\)

\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)

Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)

Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)

Vậy AM vuông góc EF


Các câu hỏi tương tự
Lê Thị Thảo Uyên
Xem chi tiết
Phạm giang
Xem chi tiết
Miu Miu
Xem chi tiết
Lê Vương Kim Anh
Xem chi tiết
Kim Lê Khánh Vy
Xem chi tiết
khos
Xem chi tiết
Music IMD
Xem chi tiết
Nguyễn Ngọc Minh Hương
Xem chi tiết
Huỳnh Ngọc
Xem chi tiết