Bài 1: Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi D và E lần lượt là điểm đối xứng của điểm H, qua AB và AC. Chứng minh rằng:
a) A là trung điểm của đoạn DE.
b) Tứ giác BDEC là hình thang vuông.
c) Cho BH=2cm, CH=8cm. Tính AH và chu vi hình thang BDEC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là điểm đối xứng của điểm H qua AB và AC. Chứng minh rằng:
a) A là trung điểm của đoạn DE
b) tứ giác BDEC là hình thang vuông
c) cho BH = 2 cm ch = 8 cm Tính AH và chu vi hình thang BDEC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ H đến AB, AC.
a) Tứ giác AEHF là hình gì? Vì sao?
b) Gọi I, K lần lượt là trung điểm của BH và CH. Chứng minh rằng: Tứ giác EFKI là hình thang vuông.
c) Gọi P là điểm đối xứng của H qua E, Q là điểm đối xứng của H qua F. Chứng minh rằng 3 điểm P, A, Q thẳng hàng.
Cho tam giác ABC vuông tại A đường cao AH. Gọi D là điểm đối xứng với H qua AC, E là điểm đối xứng với H qua AB.Chứng minh:
a) D đối xứng với E qua A.
b) Tam giác DHE vuông.
c) Tứ giác BDEC là hình thang vuông.
d) BC = CD + BE
e) Tính độ dài đoạn thẳng ED biết AB = 6cm; AC = 8cm.
(hộ câu e thôi)
Cho tam giác vuông ABC, góc A = 90 độ, đường cao AH. Gọi điểm D và E lần lượt là các điểm đối xứng của điểm H qua AB và AC.
a) 3 điểm A, D, E thẳng hàng
b) Tứ giác BDEC là hình thang vuông
c) BC = BD + CE
cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB gọi E là điểm đối xứng với H qua AC.
a) CMR: D đối xứng với e qua a
b)tứ giác BDEC là hình gì?
c) cho AB=6cm, AC=8cm. tính diện tích tứ giác BDEC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC. Tứ giác BDEC là hình gì? VI sao?
Cho tam giác ABC vuoing tại A, đường cao AH gọi D và E lần lượt là các điểm đối xứng của H qua AB,AC. Chứng minh
a) AD=AE
b)A,D,E thẳng hàng
c) Tứ giác BDEC là hình thang vuông
d) BD+CE=BC
Cho tam giác ABC cân tại A. Kẻ đường cao AH. Gọi E, H lần lượt là trung điểm của AH và DC, D là điểm đối xứng của H qua F. Gọi P là giao điểm của đường thẳng EF và AB. Tìm điều kiện của tam giác ABC để tứ giác ADHP là hình thang cân.