a: ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC
=>AB^2/AC^2=BH/CH
b: ΔAHB vuông tại H có HD là đường cao
nên BH^2=BD*BA
=>BD=BH^2/BA
ΔAHC vuông tại H có HE là đường cao
nên CH^2=CE*CA
=>CE=CH^2/CA
BD/CE=BH^2/BA:CH^2/CA
\(=\dfrac{BH^2}{BA}\cdot\dfrac{CA}{CH^2}=\left(\dfrac{BA}{CA}\right)^4\cdot\dfrac{CA}{BA}=\left(\dfrac{BA}{CA}\right)^3\)