Bài 4: (3,5đ). Cho tam giác vuông ABC ( góc A bằng 1v). kẻ đường cao AH. Gọi D,
E lần lượt là hình chiếu của H trên AB, AC. Gọi I là trung điểm của BC.
1) Chứng minh DE = AH.
2) Chứng minh hệ thức AD.AB = AH2
3) Chứng minh AI vuông góc DE
4) Tính diện tích tam giác ADE, biết AB = 6cm, AC = 8cm
Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
Chứng minh: ∠ADE = ∠BHD
Cho tam giác ABC vuông tại A, đường cao AH, AB=5cm, AC=12cm. D, E là hình chiếu của H trên AB, Ac
a) Tính BC, DE
b) Chứng minh tam giác ACB đồng dạng tam giác ADE
c) Đường vuông góc DE tại D, E cắt B, C lần lượt tại M, N. chứng minh M là trung điểm BH, N là trung điểm CH
d) BN^2-CN^2 = AB^2
cho tam giác ABC vuông tại A đường cao AH , trung tuyến AM
a, chứng minh góc HAB = góc MAC
b, gọi D , E lần lượt là hình chiếu của H trên AB, AC . chứng minh AM vuông góc DE
GIÚP MÌNH VỚI NHÉ
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC.
A. Chứng minh AH=DE
B.Gọi I, K lần lượt là trung điểm của HB,HC.Tứ giác DIKE là hình gì?
C. Gọi F là trung điểm của IK. Chứng minh tam giác FDE cân
D. Từ A kẻ đường thẳng vuông góc với DE, đường thẳng này cắt BC tại M. Chứng minh B đối xứng với C qua M.
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a. Chứng minh rằng AH2 = AD.AB = AE.AC
b. Chứng minh tam giác ABC và tam giác AED đồng dạng
c. Gọi M là trung điểm của BC, N là giao điểm của DE và BC, O là giao điểm của DE và AH. Chứng minh rằng AN vuông góc với MO
Tam giác ABC vuông tại A có AH; AM là đường cao và trung tuyến; gọi D và E lần lượt là hình chiếu của H trên AB và AC chứng minh rằng: AM vuông góc với DE
Cho tam giác ABC có góc A = 70. Đường cao AH. Gọi D, E theo thứ tự là các điểm đối xứng với của H qua AB và AC. Đường thẳng DE cắt AB, AC lần lượt tại M, N.
a) Chứng minh tam giác ADE cân
b) Tính góc ADE
c) Chứng minh AH là phân giác góc MHN
d) Chứng minh 3 đường thẳng BN, CM, AH đồng quy