Ta có: \(HC\cdot BC=15\)
nên \(HC=\dfrac{15}{BC}\)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên \(BC=2+\dfrac{15}{BC}\)
\(\Leftrightarrow BC^2=2BC+15\)
\(\Leftrightarrow BC^2-2BC-15=0\)
\(\Leftrightarrow\left(BC-5\right)\left(BC+3\right)=0\)
\(\Leftrightarrow BC=5\left(cm\right)\)
\(\Leftrightarrow CH=5-2=3\left(cm\right)\)
\(\Leftrightarrow AH=\sqrt{HB\cdot HC}=\sqrt{6}\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{BH\cdot BC}=\sqrt{2\cdot5}=\sqrt{10}\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{CH\cdot BC}=\sqrt{15}\left(cm\right)\)