a: DB/DC=5/4
BC/CD=9/4
b: Xét ΔABH vuông tai H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng vói ΔCBA
b: \(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
a: DB/DC=5/4
BC/CD=9/4
b: Xét ΔABH vuông tai H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng vói ΔCBA
b: \(BC=\sqrt{5^2+4^2}=\sqrt{41}\left(cm\right)\)
Cho tam giác ABC vuông tại a có HD là phân giác. Ah là chiều cao. Biết AB=5cm, AC=4cm. Tính tỉ số DB/DC, BC/CD. Chứng minh tam giác ABH đồng dạng với tam giác CBA. Tính BC, DC, DB
Cho tam giác ABC vuông tại A , có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (H thuộc BC) a) Tính độ dài BC . b) Chứng minh tam giác HBA đồng dạng với tam giác HAC c) Chứng minh HA2=HB. HC d) Kẻ đường phân giác AD (D thuộc BC ) . tính các độ dài DB và DC ?
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC Tính AB,AC đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
Cho tam giác ABC vuông tại A,Ab=8cm,AC=6cm,AD là tia phân giác góc A,D thuộc BC
a,Tính DB/Dc
b,Tính BC,từ đó tính DB,DC làm tròn kết quar 2 chữ số thập phân
c,Kẻ đường cao AH(H thuộc BC).Chứng minh rằng tam giác AHB đồng dạng với tam giác CHA.Tính Diện tích tam giác AHB/Diện tích tam giác CHA
d,Tính AH
cho tam giác ABC vuông tại A, AB=8cm,AC=6cm. AD là tia phân giác của góc A(D thuộc BC), đường cao AH(H thuộc BC). Chứng minh rằng:
a, tính DB/DC
b, Tính BC từ đó tính DB,DC rồi làm tròn kết quả đến chữ số thập phân thứ 2
c, tam giác AHB đồng dạng với tam giác CHA. Tính S AHB/ S CHA
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I. a) Chứng minh: ABH đồng dạng với CBA. b) Tính BC, AH, AD và DC. c) Chứng minh: AB.BI = BD.HB. d) Tính diện tích BHI.
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC). a) Tính DB/DC. b) Kẻ đường cao AH (H thuộc BC). Chứng minh tam giác AHB đồng dạng tam giác CHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a, Tính DB\DC ; DB, DC
b, Kẻ đường cao AH (H thuộc BC) . CMR: Tam giác AHB đồng dạng tam giác CHA.
c, Tính diện tích tam giác AHB và CHA.
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC