Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hoang minh nguyen

Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:

a. Tam giác ABD = tam giác EBD  b.BD là đường trung trực của AE

c. AD < DC     d. E, D, F thẳng hàng và BD vuông góc với CF

e. 2(AD + AF)>CF

Thư Nguyễn Anh
11 tháng 8 2021 lúc 15:48

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:52

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:54

c: Ta có: DA=DE

mà DE<DC

nên DA<DC

d: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC và DF=DC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

Ta có: BF=BC

nên B nằm trên đường trung trực của CF\(\left(3\right)\)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF\(\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\) suy ra BD là đường trung trực của CF

hay BD\(\perp\)CF


Các câu hỏi tương tự
Kiều Duy
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Thanh Trần
Xem chi tiết
Vũ Phương Linh
Xem chi tiết
Thành
Xem chi tiết
Cuong Vuduy
Xem chi tiết
Trần Yến Ngọc
Xem chi tiết
mimi
Xem chi tiết
Nguyễn Khánh Phương
Xem chi tiết