b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AF=HE(1)
Xét ΔAHB vuông tại H có HE là đường cao
nên \(EA\cdot EB=EH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot EB=AF^2\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AF=HE(1)
Xét ΔAHB vuông tại H có HE là đường cao
nên \(EA\cdot EB=EH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot EB=AF^2\)
cho tam giác abc vuông tại a có ah là đường cao
a) cho ab=10cm bh=5cm
tính ac bc ah
b) gọi e f lần lượt là hình chiếu của h lên ab ac
cm ae.eb=af^2
c) be=bc.cos^B
cho tam giác abc vuông tại a có ah là đường cao
a) cho ab=10cm bh=5cm
tính ac bc ah
b) gọi e f lần lượt là hình chiếu của h lên ab ac
cm ae.eb=af^2
c) be=bc.cos^B
Bãi 4) Cho tam giác ABC có AB = 6cm; AC = 8cm; BC = 10cm. a) Chứng tỏ tam giác ABC vuông b) Vẽ đường cao AH của tam giác ABC. Tính AH; HC và số đo góc B. c) Gọi E; E lần lượt là hình chiếu của H lên AB; AC. Chứng minh: BH^3 = BE^2.BC.
Cho tam giác ABC vuông tại A (AB<AC), có đường cao AH, trung tuyến AM. Gọi E, F lần lượt là hình chiếu vuông góc của H lên AB, AC. CMR: AF.FC + AE.EB = HB.HC
Cho tam giác ABC (AB<AC) vuông tai A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC. Chứng minh rằng: \(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
Cho tam giác ABC vuông tại A , đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB,AC Chứng minh AE.EB+ AF.FC= AH^2
Cho tam giác ABC vuông tại A có AB = 3 cm; AC = 4 cm, đường cao AH
b) Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
Chứng minh rằng: AE. AB = AF. AC
cho tam giác ABC vuông tại A, đường cao AH, có BH=2cm, BC=8cm
A)tính AB, góc C
B)gọi E,F lần lượt là hình chiếu vuông tại H trên AB,AC. chứng minh BE.AB+CF.AC+HB.2HC+BC^2
C) Tìm diện tích tứ giác AEHF
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC