a: Xét ΔBHK vuông tại H và ΔBAD vuông tại A có
góc HBK=góc ABD
D đó: ΔBHK đồng dạng với ΔBAK
Xét ΔBAK và ΔBCD có
góc BAK=góc BCD
góc ABK=góc CBD
DO đó: ΔBAK đồng dạng với ΔBCD
b: Xét ΔBHA có BK là phân giác
nên HK/KA=BH/HA
hay \(HK=\dfrac{BH}{HA}\cdot AK\)
Ta có: ΔBAK đồng dạng với ΔBCD
nên AK/CD=BA/BC
hay \(CD=AK:\dfrac{BA}{BC}=AK\cdot\dfrac{BC}{BA}\)
\(HK\cdot DC=\dfrac{BH}{HA}\cdot AK\cdot AK\cdot\dfrac{BC}{BA}\)
\(=AK^2\cdot\dfrac{BA}{BC}\cdot\dfrac{BC}{BA}=AK^2\)