Cho ΔABC vuông tại A, đường cao AH; AB= 21 cm, AC=28cm. Tia phân giác của góc A cắt BC tại D. Từ H kẻ đường thẳng song song với AC cắt AB tại M, đường thẳng song song với AB cắt AC tại N
a) Tứ giác AMHN là hình gì? Vì sao?
b) Tính độ dài BC, AH
c) Chứng minh ΔBHA ~ ΔAHC. Tính tỉ số diện tích ΔBHA ~ ΔAHC
d) Tính độ dài các đoạn thẳng CD và BD
e) Chứng minh: \(\dfrac{AM}{AB}+\dfrac{AN}{AC}=1\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Vậy: BC=35cm
Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)
hay AH=16,8(cm)
Vậy: BC=35cm; AH=16,8cm
a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))
\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)
\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔBHA\(\sim\)ΔAHC(g-g)