Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh

 Cho tam giác ABC vuông tại A có AB=6, gọi D, E lần lượt là trung điểm của BC, AC. Gọi F là điểm đối xứng với D qua E. a) Tính DE ? b) Chứng minh ABDF là hình bình hành c) Chứng minh ADCF là hình thoi. Tính cạnh hình thoi biết AC=8 ? d) Tam giác ABC phải thỏa mãn điều kiện gì để ADCF là hình vuông?

Homin
29 tháng 11 2021 lúc 9:02

a, Trong là trung điểm của E là trung điểm của ⇒ DE là đường trung bình của ⇒ DE = 1/2AB (1)

và: DE // AB (2)

F là điểm đối xứng với E nên:

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

là trung điểm của BC

=>  AF = BD (cmt)

=> BC = AF (5).

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF là hình thoi.

Ta có: ⇒AE = 1/2AC = 4.

góc E = 90 (⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để AD⊥BC.

Mà: AD⊥BC khi và chỉ khi BC hay:

△ABC vuông cân tại A.

Vậy, điều kiện để △ABC vuông cân tại A


Các câu hỏi tương tự
Le Hong Khanh
Xem chi tiết
Lưu Đức Bách
Xem chi tiết
Đạt
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Bùi Thị Thảo
Xem chi tiết
Đoàn Minh Ngọc
Xem chi tiết
ANH DRAGON TV
Xem chi tiết
Võ Đoàn Hương Giang
Xem chi tiết
Duyên Lương
Xem chi tiết