Cho tam giác ABC vuông tại A có AB < AC, kẻ đường phân giác BD của góc ABC (D thuộc AC). Kẻ DM vuông góc với BC tại M.
a) Chứng minh tam giác DAB = tam giác DMB.
b) Chứng minh BD là đường trung trực của AM.
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng BD cắt KC tại N. Chứng minh BN vuông góc KC và tam giác KDC cân tại D.
d) Gọi E là trung điểm của BC, qua N kẻ đường thảng song song với BC, đường thẳng này cắt AB tại P. CHứng minh ba đường CP, KE, BN đồng quy.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D
Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc CK tại N