Kẻ IG⊥AB tại G và IK⊥AC tại K
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
\(\hat{KCI}=\hat{HCI}\)
Do đó: ΔCKI=ΔCHI
=>CK=CH=3cm; IH=IK=1(cm)
Xét ΔBGI vuông tại G và ΔBHI vuông tại H có
BI chung
\(\hat{GBI}=\hat{HBI}\)
Do đó: ΔBGI=ΔBHI
=>BG=BH=2cm; IG=IH=1cm
Xét tứ giác AGIK có \(\hat{AGI}=\hat{AKI}=\hat{KAG}=90^0\)
nên AGIK là hình chữ nhật
Hình chữ nhật AGIK có IK=IG
nên AGIK là hình vuông
=>AG=AK=IK=IG=1cm
AB=AG+GB=1+2=3(cm)
AC=AK+KC=1+3=4(cm)
BC=BH+CH=3+2=5(cm)
Chu vi tam giác ABC là:
AB+AC+BC
=3+4+5
=12(cm)