Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=3.6^2-2.1^2=8.55\)
hay \(AC=\dfrac{3\sqrt{95}}{10}\left(cm\right)\)
Xét ΔABC vuông tại B có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{3\sqrt{95}}{10}:\dfrac{36}{10}=\dfrac{\sqrt{95}}{12}\)
\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2.1}{3.6}=\dfrac{7}{12}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{3\sqrt{95}}{10}:\dfrac{21}{10}=\dfrac{\sqrt{95}}{7}\)
\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{7\sqrt{95}}{95}\)