Cho tam giác ABC có góc BAC = 90 độ, AB< AC, đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên cạnh AB
a) CM rằng MN=AH
b) CM rằng AM.AB=AN.AC=AH^2
c) Gọi K là giao điểm của NM và BC. CM rằng KB.KC= KH^2
d) Gọi O là trung điểm của BC, I là giao điểm của MN và AH.CM rằng OI vuông góc với AK
e) Giả sử AH/AO = 40/41. Tính tỉ số AB/AC
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC nhọn (AB<AC). các đường cao AE , BF cắt nhau tại H. gọi M là trung điểm của BC qua H vẽ đường thẳng a vuông góc với HM , a cắt AB , Ac lần lượt tại I và K. a) cm: Tam giác ABC ~ Tam giác EFC b) Qua C kẻ đường thẳng b song song với IK , b cắt AH, AB theo thứ tự tại N và D . cm : NC=ND và HI=HK c) Gọi G là giao điểm của CH và AB ,cm: AH/HE + BH/HF + CH/HG > 6
Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Cho tam giác ABC vuông tại A .Đường cao AH .Gọi P và Q là hình chiếu của H trên cạnh AB và AC.
a, Tứ giác ABHQ là hình gì?
b, Gọi I và K lần lượt là trung điểm của BH và CK. CM BQ vuông góc với IP và IP song song KQ
c, kẻ trung tuyến AM của tam giác ABC. CM AM vuông góc với BQ
Cho tam giác ABC vuông tại A đường cao AH gọi M và N lần lượt là trung điểm AH và BH gọi O là giao điểm AN với CM. Chứng minh
a) AN vuông góc với CM
b) AH^2= 4MC.MO
Cho tam giác ABC vuông tại A (AB<AC). D, E lần lượt là trung điểm. Gọi M là giao điểm của đường thẳng vuông góc với BC tại b và đường thẳng DE. N là giao điểm của CM và AH
cho tam giác ABC cân tại A có đường cao AH .dựng hình chữ nhật AHCK .Gọi I là hình chiếu của H trên AC .Gọi M.N lần lượt là trung điểm của IC và AK .CM : MN vuông góc với BI