Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh tú Trần

Cho tam giác ABC vuông tại A, BC= \(3\sqrt{5}\)cm. Hình vuông ADEF cạnh 2cm có D thuộc AB, E thuộc BC, F thuộc AC. Tính độ dài các cạnh AC, AB

Nguyễn Tất Đạt
26 tháng 6 2021 lúc 22:07

Đặt  \(\hept{\begin{cases}AB=x\\AC=y\end{cases}\left(x,y>0\right)}\)

Theo định lí Thales \(\frac{EF}{AB}=\frac{CF}{CA}\Rightarrow\frac{AB-EF}{AB}=\frac{CA-CF}{CA}\)

Hay \(\frac{x-2}{x}=\frac{2}{y}\Leftrightarrow xy=2\left(x+y\right)\left(1\right)\)

Theo định lí Pytagoras: \(AB^2+AC^2=BC^2\)hay \(x^2+y^2=45\left(2\right)\)

Từ (1),(2); ta có hệ phương trình: \(\hept{\begin{cases}xy=2\left(x+y\right)\\x^2+y^2=45\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\x^2+2xy+y^2-4\left(x+y\right)-45=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-45=0\\\left(x+y\right)^2-4\left(x+y\right)-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x^2+y^2-45=0\end{cases}}\)(Vì x,y dương)

\(\Leftrightarrow\hept{\begin{cases}y=9-x\\x^2+\left(9-x\right)^2-45=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=9-x\\x=6\left(h\right)x=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\left(h\right)\hept{\begin{cases}x=3\\y=6\end{cases}}\)

Vậy \(AB=3,AC=6\) hoặc \(AB=6,AC=3.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Đức An
Xem chi tiết
Nguyễn An
Xem chi tiết
Vũ Thị Tuyết Chinh
Xem chi tiết
Phan hữu Dũng
Xem chi tiết
Hy Đinh Lạp Tần
Xem chi tiết
Ly Nguyễn
Xem chi tiết
nongvietthinh
Xem chi tiết
Nguyễn Khánh Quỳnh
Xem chi tiết
Thảo Lê Duy
Xem chi tiết