a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Cho tam giác ABC vuông tại A, AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh: tam giác HBA đồng dạng với tam giác HAC. Từ đó suy ra: AH.AH=BH.HC
c) Kẻ HD vuông góc với AB và HE vuông góc với AC. Chứng minh: tam giác AED đồng dạng với tam giác ABC
d) Nếu AB.AC=4AD.AE thì tam giác ABC là tam giác gì?
cho tam giác ABC vuông tại A có AB = 15cm, BC = 25cm . AH là đường cao của tam giác ABC .
a. chứng minh tam giác ABC đồng dạng với tam giác BCA
b. tính AC và AH
C. Gọi BF là tia phân giác của tam giác ABC , BF cắt AH tại D.
chứng minh tam giác ABD đồng dạng với tam giác CBF
d. Trên tia đối của tia AB lấy điểm E sao cho AE = 10cm . Qua E vẽ đường thằng D song song BF cắt AC tại K
chứng minh : AK*BH = AE* DH và diện tích của tam giác ABC = 3 phần 5 diện tích của tam giác EBC
Cho tam giác ABC vuông tại A, đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA, từ đó suy ra AB.AH = BH.AC
b) Tia phân giác của góc ABC cắt AH tại I. Biết BH = 3cm, AB = 5cm. Tính AI,HI
c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK // AC
Cho tam giác ABC vuông tại A. Đường cao AH. a) Chứng minh rằng tam giác ABC đồng dạng với tam giác HBA. b) Chứng minh rằng tam giác ABC đồng dạng với tam giác HAC. c) AC^2 = BC.CH
đ) Trên HC lấy điểm D sao cho HD = HA. đường vuông góc với BC tại D cắt AC tại E. kẻ AG là đường phân giác của tam giác ABC
cm GB / BC = HD/(AH + HC)
Cho tam giác ABC vuông tại A. Đường cao AH.
a) Chứng minh rằng tam giác ABC đồng dạng với tam giác HBA.
b) Chứng minh rằng tam giác ABC đồng dạng với tam giác HAC.
c) Kẻ đường phân giác BE của tam giác abc. Biết BH=9cm, HC=16cm, tính độ dài các đoạn AE, Ec
Cho tam giác ABC vuông tại A, đường cao AH, AB=8 AC=6
a) tính BC
b)Chứng minh tam giác ABC đồng dạng với tam giác HBA, tam giác HAC đồng dạng với tam giác HBA
c) Gọi M,N là trung điểm của BH,AH. Chứng minh Am vuông góc CN
Cho tam giá ABC vuông tại A, đường cao AH.
a) Chứng minh hai tam giác ABC và HBA đồng dạng với nhau, từ đó suy ra AB2= BH. BC
b) Tia phân giác cắt AH tại I, Chứng minh rằng IA/IH = AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK // AC.
Giúp mình với mình đang cần gấp ạ