Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Cho tam giác ABC vuông tại A, AH là đường cao. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB, AC. M là điểm đối xứng với H qua E. Từ B kẻ BI vuông góc BC (I thuộc AM). Chứng minh rằng: AH, EF và CI đồng quy

Trần Tuấn Hoàng
20 tháng 4 2023 lúc 18:48

Bạn tự vẽ hình. Gợi ý:

- Chứng minh tứ giác AEHF là hình chữ nhật.

*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.

- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)

Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)

\(\Rightarrow\)△ABI cân tại I nên AI=BI.

*CA cắt BI tại S. Chứng minh I là trung điểm BS.

Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).

- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.

\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.

Suy ra đpcm.

 


Các câu hỏi tương tự
Lê Thị Thảo Uyên
Xem chi tiết
Phạm giang
Xem chi tiết
khos
Xem chi tiết
Kim Lê Khánh Vy
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Nhan Mai
Xem chi tiết
Tạ Minh Quân
Xem chi tiết
lê minh
Xem chi tiết
Nguyễn Khánh Chi
Xem chi tiết