Xét tứ giác ABKC có:
\(B\chi\perp AB\) (gt)
\(AC\perp AB\) (gt)
\(\Rightarrow B\chi\text{//}AC\)
\(\Rightarrow\text{Tứ giác ABKC}\) là hình thang
mà \(\widehat{A}=\widehat{B}=\)\(90^0\)
Vậy hình thang ABKC là hình thang vuông
b) Xét ΔABK và ΔCHA có:
\(\widehat{ABK}=\widehat{CHA}=\)\(90^0\)
\(\widehat{BAK}=\widehat{HCA} \) ( cùng phụ với \(\widehat{HAC}\) )
\(\Rightarrow\text{ΔABK}\) \(\sim\)ΔCHA (gg)
\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{CA}\)
\(\Rightarrow AB.CA=AK.CH\)
c) Xét ΔAHB và ΔCHA có:
\(\widehat{AHB}=\widehat{CHA}=\)\(90^0\)
\(\widehat{BAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{HAC}\) )
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(gg\right)\)
\(\Rightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)
\(\Rightarrow AH.AH=BH.CH\)
\(\Rightarrow AH^2=BH.CH\)
\(\Rightarrow AH^2=9.16\)
\(\Rightarrow AH=12\left(cm\right)\)
Xét \(\Delta AHB\) vuông tại H có:
\(AB^2=BH^2+HA^2\) ( Định lí Pitago)
\(\Rightarrow AB^2=9^2+12^2\)
\(\Rightarrow AB=\sqrt{225=15\left(cm\right)}\)