Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dũng
Cho tam giác ABC vuông tại A( AB<AC), đường cao AH. Lấy điểm I thuộc cạnh AH. Kẻ đường thẳng đi qua B và vuông góc CI tại K. a) Chứng minh rằng CH.CB=CI.CK b) Tia BK cắt tia HA tại D. Chứng minh rằng góc BHK= góc BDC. c) Trên tia đối của tia KC lấy điểm M sao cho BM=BA. Chứng minh rằng góc BMD= 90 độ d) Vẽ đường phân giác AN của tam giác ABC ( N thuộc BC ) ; đường phân giác NE ( E thuộc BC ) ; đường phân giác NF ( F thuộc AC ). Chứng minh rằng: EA/EF . NB/NC . FC/FA = 1GIÚP MÌNH CÂU D VỚI
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 15:29

a: Xét ΔCKB vuông tại K và ΔCHI vuông tại H có

góc KCB chung

=>ΔCKB đồng dạng với ΔCHI

=>CK/CH=CB/CI

=>CK*CI=CH*CB=CA^2

b: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

góc KBC chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BD*BK=BH*BC=BA^2

c: BA^2=BD*BK

BA=BM

=>BM^2=BD*BK

=>ΔBMD vuông tại M

=>góc BMD=90 độ

d: SỬa đề: EA/EB*NB/NC*FC/FA

=NA/NB*NB/NC*NC/NA

=1