Cho tam giác ABC vuông tại A ,AB nhỏ hơn AC đường cao AH biết AB = 6 cm ah = 4,8 cm
a)Tính AC và Tính góc B
b) trên HC lấy D sao cho ha = HD Kẻ DI vuông BC Chứng minh AI = AB
Cho tam giác ABC vuông tại A cs đường cao AH . Biết HB = 2 cm , HC = 8cm. a, Tính AH AC AB . b, kẻ HD vuông góc với AB , HE vuông góc với AC , Chứng minh DE=AH . c, gọi M là trung điểm BH , Chứng minh DM vuông góc với DE
Tam giác ABC vuông tại A ( AB < AC ) , đường cao AH . Lấy M thuộc HC sao cho : HM = AH . Qua M kẻ đường thẳng vuông góc với AB cắt AC tại D .
Chứng minh : \(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AC^2}\)
Cho tam giác ABC vuông tại A (AC>AB),đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
a) Cmr 2 tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m=AB.
b) Gọi M là trung điểm đoạn BE. Cmr 2 tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM.
c) Tia AM cắt BC tại G. C/m:\(\frac{GB}{BC}=\frac{HD}{AH+HC}\).
Cho tam giác vuông ABC có cạnh AC>AB đường cao AH(H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a, CM: hai tam giác BEC và ADC đồng dạng
b, CM: Tam giác ABE cân
c,Gọi M là trung điểm của BE và vẽ tia AM cắt BG tại G. CMR:\(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác vuông ABC có cạnh AC>AB đường cao AH(H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E
a, CM: hai tam giác BEC và ADC đồng dạng
b, CM: Tam giác ABE cân
c,Gọi M là trung điểm của BE và vẽ tia AM cắt BG tại G. CMR:\(\frac{GB}{BC}=\frac{HD}{AH+HC}\)
Cho tam giác ABC vuông tại a(AC>AB), đường cao AH(H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường cao vuông góc với BC tại D cắt AC tại E.
a) CMR hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m=AB.
b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dang. Tính số đo của góc AHM
Cho tam giác ABC vuông tại a có đường cao AH 1.cho biết AB =3cm , AC=4cm , tính độ dài các đoạn BC,HB,HC,AH 2. Kẻ HE vuông góc với AB , HF vuông góc với AC ( E thuộc AB , F thuộc AC )
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD