1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho đường tròn (O; R), đường kính BC. Lấy điểm A trên đường tròn ( O ) sao cho AB = R.
a) Tính số đo góc A, góc B, góc C và cạnh AC của tam giác ABC theo R
b)Đường cao AH của tam giác ABC cắt đường tròn ( O ) tại D. Chứng minh: BC là đường trung trực của AD và tam giác ABC đều.
c)Tiếp tuyến tại D của đường tròn ( O ) cắt đường thẳng BC tại E. Chứng minh: EA là tiếp tuyến của đường tròn ( O ).
d) Chứng minh : EB. CH = BH. EC
Cho đường tròn (O; R), đường kính BC. Lấy điểm A trên đường tròn ( O ) sao cho AB = R.
a) Tính số đo góc A, góc B, góc C và cạnh AC của tam giác ABC theo R
b)Đường cao AH của tam giác ABC cắt đường tròn ( O ) tại D. Chứng minh: BC là đường trung trực của AD và tam giác ABC đều.
c)Tiếp tuyến tại D của đường tròn ( O ) cắt đường thẳng BC tại E. Chứng minh: EA là tiếp tuyến của đường tròn ( O ).
d) Chứng minh : EB. CH = BH. EC
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
Cho tam giác ABC vuông tại A AB < AC lấy điểm E thuộc cạnh AC sao cho góc ABI bằng góc C . Đường tròn O đường kính IC cắt BI tại D và cắt BC ở M.
Chứng minh rằng CI là phân giác góc DCM
DA là tiếp tuyến của đường tròn O
cho tam giác ABC vuông tại A, đường cao AH biết BC=10cm, góc C=30 độ
a) Tính AB,AC và AH
b) Vẽ đường tròn tâm O đường kính AB. Chứng minh H thuộc đường tròn O
c) Vẽ AI vuông góc với OC tại I và cắt đường tròn tại D. Chứng minh CD là tiếp tuyến của đừng tròn O
Cho đường tròn (O), đường kính AD vuông góc với dây BC tại I (I thuộc bán kính OD) a) ΔABC là tam giác gì? Vì sao? b) Kẻ BE vuông góc với AC (E thuộc AC), BE cắt AD ở H. Chứng minh BH//CD c) Tứ giác BHCD là hình gì? Vì sao? d) Gọi O' là tâm đường tròn bán kính AH. Chứng minh rằng điểm E nằm trên đường tròn (O') e) Chứng muinh rằng IE là tiếp tuyến của đường tròn (O')
Cho tam giác ABC vuông tại A (AB<AC).Đường tròn (O) đường kính AB cắt BC tại H .Tia phân giác góc HAC cắt BC tại E và cắt đường tròn (O) tại điểm thứ 2 lf D .Gọi F là giao điểm của AH và BD .chứng minh rằng
a)Tứ giác DEHF nội tiếp
b)Δ ABE cân
c)OD là tiếp tuyến của đường tòn ngoại tiếp tứ giác DEHF
Cho đường tròn (O), đường kính BC, A là điểm thuộc (O) sao cho AB<AC, D là điểm nằm giữa O và C. Đường thẳng vuông góc với BC tại D cắt AC tại E và AB tại F.
a/ Chứng minh các tứ giác ABDE và ADCF nội tiếp
b/ Chứng minh góc AEF = góc ABC
c/ Tiếp tuyến tại A của đường tròn (O) cắt DE tại M. Chứng minh tam giác AME cân tại M.
d/ Gọi I là tâm đường tròn ngoại tiếp tứ giác ADCF. Chứng minh OI vuông góc AC