cho tam giác ABC vuông tại A ,AB <AC có AH là đường cao. vẽ HD vuông góc AB tại D và HE vuông góc AC tại E. chúng minh tứ giác ADHE là hcn. trến tia đối AC lấy F sao cho AE=AF .gọi M là điểm đối xứng của B qua A. chứng minh tứ giác EMFB là h thoi. gọi P và Q lần lượt là trung điểm của BF và EM chứng minh P,A,Q thẳng hàng
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Xét tứ giác EMFB có
A là trung điểm chung của EF và MB
=>EMFB là hình bình hành
Hình bình hành EMFB có EF\(\perp\)MB
nên EMFB là hình thoi
c: EMFB là hình thoi
=>EM//FB và EM=FB(1)
Ta có: P là trung điểm của FB
=>\(PF=PB=\dfrac{BF}{2}\left(2\right)\)
Ta có: Q là trung điểm của EM
=>\(QE=QM=\dfrac{EM}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra PF=PB=QE=QM
Xét tứ giác MQBP có
MQ//BP
MQ=BP
Do đó: MQBP là hình bình hành
=>MB cắt QP tại trung điểm của mỗi đường
mà A là trung điểm của MB
nên A là trung điểm của PQ
=>P,A,Q thẳng hàng