Lời giải:
Xét tam giác $BED$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BED}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BED\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BE}{BD}=\frac{BA}{BC}$
$\Rightarrow BE=\frac{BA.BD}{BC}=\frac{AB^2}{2BC}$
Có:
$EC^2-EB^2=(BC-EB)^2-EB^2=BC^2-2BC.EB=BC^2-2BC.\frac{AB^2}{2BC}=BC^2-AB^2=AC^2$
Ta có đpcm.